The Strong Asymptotic Freeness of Haar and Deterministic Matrices

نویسنده

  • B. Collins
چکیده

In this paper, we are interested in sequences of q-tuple of N × N random matrices having a strong limiting distribution (i.e. given any non-commutative polynomial in the matrices and their conjugate transpose, its normalized trace and its norm converge). We start with such a sequence having this property, and we show that this property pertains if the q-tuple is enlarged with independent unitary Haar distributed random matrices. Besides, the limit of norms and traces in non-commutative polynomials in the enlarged family can be computed with reduced free product construction. This extends results of one author (C. M.) and of Haagerup and Thorbjørnsen. We also show that a p-tuple of independent orthogonal and symplectic Haar matrices have a strong limiting distribution, extending a recent result of Schultz.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Second Order Freeness and Fluctuations of Random Matrices: Ii. Unitary Random Matrices

We extend the relation between random matrices and free probability theory from the level of expectations to the level of fluctuations. We show how the concept of “second order freeness”, which was introduced in Part I, allows one to understand global fluctuations of Haar distributed unitary random matrices. In particular, independence between the unitary ensemble and another ensemble goes in t...

متن کامل

Asymptotically Liberating Sequences of Random Unitary Matrices

A fundamental result of free probability theory due to Voiculescu and subsequently refined by many authors states that conjugation by independent Haar-distributed random unitary matrices delivers asymptotic freeness. In this paper we exhibit many other systems of random unitary matrices that, when used for conjugation, lead to freeness. We do so by first proving a general result asserting “asym...

متن کامل

Integration with Respect to the Haar Measure on Unitary, Orthogonal and Symplectic Group

We revisit the work of the first named author and using simpler algebraic arguments we calculate integrals of polynomial functions with respect to the Haar measure on the unitary group U(d). The previous result provided exact formulas only for 2d bigger than the degree of the integrated polynomial and we show that these formulas remain valid for all values of d. Also, we consider the integrals ...

متن کامل

Asymptotic Freeness Almost Everywhere for Random Matrices

Voiculescu’s asymptotic freeness result for random matrices is improved to the sense of almost everywhere convergence. The asymptotic freeness almost everywhere is first shown for standard unitary matrices based on the computation of multiple moments of their entries, and then it is shown for rather general unitarily invariant selfadjoint random matrices (in particular, standard selfadjoint Gau...

متن کامل

Free Deterministic Equivalents, Rectangular Random Matrix Models, and Operator-Valued Free Probability Theory

Motivated by the asymptotic collective behavior of random and deterministic matrices, we propose an approximation (called " free determin-istic equivalent ") to quite general random matrix models, by replacing the matrices with operators satisfying certain freeness relations. We comment on the relation between our free deterministic equivalent and deterministic equivalents considered in the eng...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011